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Abstract

Trading in stock market indices has gained unprecedented popularity in major financial markets around the world. However, the prediction
of stock price index is a very difficult problem because of the complexity of the stock market data. This study proposes stock trading model
based on chaotic analysis and piecewise nonlinear model. The core component of the model is composed of four phases: The first phase
determines time-lag size in input variables using chaotic analysis. The second phase detects successive change-points in the stock market data
and the third phase forecasts the change-point group with backpropagation neural networks (BPNs). The final phase forecasts the output with
BPN. The experimental results are encouraging and show the usefulness of the proposed model with respect to profitability. © 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Predicting stock market’s movements is quite difficult
because many factors including political events, general
economic conditions, and investors’ expectations influence
stock markets. Previous studies on stock market prediction
using artificial neural networks (ANNs) have been executed
during the past decades. The earliest studies are mainly
focused on applications of ANN to stock market prediction
(Ahmadi, 1990; Choi, Lee, & Rhee, 1995; Kamijo & Tani-
gawa, 1990; Kimoto, Asakawa, Yoda, & Takeoka, 1990;
Trippi & DeSieno, 1992; White, 1994). Recent research
tends to hybridize several artificial intelligence (Al) techni-
ques (Hiemstra, 1995; Tsaih, Hsu, & Lai, 1998). Some
researchers included novel factors in the learning process.
Kohara, Ishikawa, Fukuhara, and Nakamura (1997) incor-
porated prior knowledge to improve the performance of
stock market prediction. In addition, Quah and Srinivasan
(1999) proposed an ANN stock selection system to select
stocks that are top performers from the market and to avoid
selecting under performers. They concluded that the portfo-
lio of the proposed model outperformed the portfolios of the
benchmark models in terms of compounded actual returns
overtime. Kim and Han (2000) proposed a genetic algo-
rithms approach to feature discretization and the determina-
tion of connection weights for ANN to predict the stock
price index. They suggested that their approach reduced
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the dimensionality of the feature space and enhanced
prediction performance. Those studies have tended to use
statistical and Al techniques in isolation. However, an inte-
grated approach, which makes full use of statistical
approaches and Al techniques, offers the promise of better
performance than each method alone.

This study proposes the integrated neural network model
based on the statistical change-point detection. In general,
macroeconomic time series data is known to have a series of
change-points since they are controlled by government’s
monetary policy (Mishkin, 1995; Oh & Han, 2001). The
government takes intentional action to control the currency
flow that has direct influence upon fundamental economic
indices. For the stock price index, institutional investors
play a very important role in determining its ups and
downs since they are major investors in terms of marking
and volume for trading stocks. They respond sensitively to
such economic indices like stock price indices, the consu-
mer price index, anticipated inflation, etc. Therefore, we can
conjecture that the movement of the stock price index also
has a series of change-points. In this study, we show how we
have applied ANN as a nonlinear statistical modeling tech-
nique to the task of stock market index prediction, attempt to
capture the significant nonlinear relationships in the indices,
and reflect them into the stock trading model.

The proposed model is composed of four phases: the first
phase is to determine time-lag size in input variables,
the second phase is to detect successive change-points
in the stock price index dataset, the third phase is to forecast
the change-point group with BPN, and the final stage is to
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forecast the output with BPN. This study then examines the
predictability of the proposed stock trading model. To
explore the predictability, we divided stock market data
into the training data over one period and the testing data
over the next period. The predictability of stock trading
model is examined using three metrics.

In Section 2, we outline the development of piecewise
nonlinear model and its application to the financial econom-
ics. Section 3 describes the proposed stock trading model.
Sections 4 and 5 report the processes and the results of the
simulated trading. Finally, the concluding remarks are
presented in Section 6.

2. Prior research
2.1. Chaos analysis

Increasing evidence over the past decade indicates that
stock market show chaotic behavior. A chaotic system can
be modeled by a number of coupled nonlinear first-order
differential equations. The minimum number of differential
equations is equal to the integer that embeds the fractal
dimension. The dimension of the phase space that spans
the minimal number of differential equations is called the
embedding dimension (Embrechts, 1994).

In addition, the level of chaos in a time series data can be
characterized by a number of methods. One of the methods
widely used by the physicists to test for chaos in time series
data is the estimation of correlation dimension (Cecen &
Erkal, 1996). The correlation dimension is an estimate of
the fractal dimension and is used to differentiate between
deterministic chaos and stochastic systems. It measures the
correlation integral C(eg), the probability that two point
chosen at random will be within a certain distance of each
other, and tests how the probability changes as the distance
is increased (Peters, 1996).

For a given time series {7y, : t=1,...,T} of D-dimen-
sional vectors, the correlation integral is formally defined
as:

2
C(e) = lim

T =1 > L) )]

i<i

where [,(x,y) is an indicator function which is equal to one
if |x —y| < &, and zero otherwise; where |jx — | is the
norm as measured by the Euclidean distance (Wasserman,
1989).

Grassberger and Procaccia (1983) defined the correlation
dimension of the time series {vy;} as follows:

D" = lir% [log C,, (&, T)/log &] 2)
where m is embedding dimension.

2.2. Review of piecewise nonlinear model

Financial analysts and econometricians have popularly

used piecewise linear models which include change-point
models. They are known as models with structural breaks in
economic literature. In these models, the parameters are
assumed to shift—typically once—during a given sample
period and the goal is to estimate two sets of parameters as
well as the change-point or structural break.

These techniques have been applied to macroeconomic
time series. The first study in this research area is conducted
by Perron (1989, 1990) and Rappoport and Reichlin (1989).
From then on, several statistics have been developed which
work well in a change-point framework, all of which are
considered in the context of breaking the trend variables
(Banergee, Lumsdaine, & Stock, 1992; Christiano, 1992;
Perron, 1995; Vogelsang & Perron, 1995; Zivot & Andrews,
1992). In those cases where only a shift in the mean is
present, the statistics proposed in the papers by Perron
(1990) or Perron and Vogelsang (1992) stand out. However,
some variables do not show just one change-point. Rather, it
is common for them to exhibit the presence of multiple
change-points. Thus, it may be necessary to introduce multi-
ple change-points in the specifications of the models. For
example, Lumsdaine and Papell (1997) considered the
presence of two or more change-points in the trend vari-
ables. In this study, it is assumed that the stock price indexes
can have two or more change-points as well as just one
change-point.

There are few artificial intelligence models to consider
the change-point detection problems. Most of the previous
research focused on the finding of unknown change-points
for the past, not the forecast for the future (Li & Yu, 1999;
Wolkenhauer & Edmunds, 1997). However, piecewise
nonlinear model using structural change is known to signif-
icantly improve the performance for time series forecasting
(Gorr, 1994; Oh & Han, 2001; Wasserman, 1989; White,
1994). The proposed model obtains intervals divided by
change-points in the training phase, identifies them as
change-point groups in the training phase, and forecasts to
which group each sample is assigned in the testing phase. It
will be tested whether the presence of change-points to our
model may improve the predictability of stock price index.

2.3. The Pettitt test

In this study, a series of change-points will be detected by
the Pettitt test (Pettitt, 1979, 1980a), a nonparametric
change-point detection method, since nonparametric statis-
tical property is a suitable match for a neural network model
that is a kind of nonparametric method (Vostrikova, 1981).
In addition, the Pettitt test is a kind of Mann—Whitney type
statistic, which has remarkably stable distribution and
provides a robust test of the change-point resistant to
outliers (Pettitt, 1980b). In this point, the introduction of
the Pettitt test is fairly appropriate for the analysis of chaotic
time series data. The Pettitt test is explained as follows.

Consider a sequence of random variables X, X5, ..., X7,
then the sequence is said to have a change-point at 7if X, for
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t=1,2,...,7 have a common distribution function F;(x)
and X, fort =7+ 1,7+ 2,...,T have a common distribu-
tion F,(x), and F;(x) # F,(x). We consider the problem of
testing the null hypothesis of no-change, Hy : 7= T, against
the alternative hypothesis of change, Hy : 1 = 7 < T, using
a nonparametric statistic.

An appealing nonparametric test to detect a change would
be to use a version of the Mann—Whitney two-sample test.
Let

D = sgn(X; — X;) 3

where sgn(x) =1 if x>0, 0 if x=10, —1 if x <0, then
consider

T
Ut,T = Z Z DU (4)

The statistic U, 7 is equivalent to a Mann—Whitney statistic
for testing that the two samples Xi,...,X; and X,1q,..., X7
come from the same population. The statistic U, 7 is then
considered for values of # with 1 = ¢ < T. For the test of
H, : no-change against H, : change, we propose the use of
the statistic

Ky = max U, 7| (5)
The limiting distribution of K7 is Pr & 2 exp{ — 6k*/(T* +
T%)} for large T — oo.

The Pettitt test detects a possible change-point in the time
sequence dataset. Once the change-point is detected through
the test, the dataset is divided into two intervals. The inter-
vals before and after the change-point form homogeneous
groups, which take heterogeneous characteristics from each
other. This process becomes a fundamental part of the
binary segmentation method explained in Section 3.

3. Research design

There has been much research interest of integrating
statistical techniques and neural network learning meth-
ods. It has been widely recognized that combining
multiple techniques yield synergism for discovery and
prediction (Gottman, 1981; Kaufman, Michalski, &
Kerschberg, 1991). In this section, we discuss the archi-
tecture and the characteristics of our model to integrate
the change-point detection and BPN. The BPN is
applied to our model since it has been used successfully
in many applications such as classification, forecasting
and pattern recognition (Patterson, 1996). The BPN is
used as a classification tool in Phase III and as a fore-
casting tool in Phase IV. Based on the Pettitt test, the
proposed model consists of four phases as is explained.

3.1. Phase I (determination of time-lag size in input
variables)

ANN for univariate time series forecasting is a kind of

nonlinear autoregressive (AR) model and so the choice of
order in the model is based on the embedding dimension of
the series (i.e. stock price index) since the chaos analysis is a
good method to analyze nonlinear dynamics in the time
series. Nonlinear dynamics and chaos theory can provide
information about input sizes (i.e. time-lags) for the design
of forecasting models using neural networks (Embrechts,
Cader, & Deboeck, 1994).

3.2. Phase Il (construction of homogeneous groups in daily
stock price index)

The Pettitt test is applied to the stock price index at time ¢
in the training phase. The Pettitt test mentioned in Section 2
is a method for finding just one change-point in time series
data. Based on this method, multiple change-points can be
obtained under the binary segmentation method (Vostri-
kova, 1981). With H, as in Section 2, under the alternative
hypothesis we now assume that there are R changes in the
parameters, where R is a known integer. The alternative can
be formulated as:

Hf\R) : there are integers 1 < ky <k, < - < kg

<n suchthat ) =+ = O # O = = 0,

# Opye1 = = O, # Oy =
= @, for the parameter 6's.

We note that the test statistics under the null hypothesis will
remain consistent against H;R) as well, despite the fact that
they were derived under the assumption that R = 1. Without
the loss of generality, we can deduce that the tests
mentioned in Section 2 are extended to the form for ‘no
change’ against the ‘R changes’ alternative H/(f) .

Vostrikova (1981) suggested a binary segmentation
method as follows. First, use the change-point detection
test. If Hy is rejected, then find 121 that is the time where
Eq. (5) is satisfied. Next divide the random sample into two
subsamples {X;: 1 =i= 121} and {X;: 121 <i=n}, and
test both subsamples for further changes. One continues
this segmentation procedure until no subsamples contain
further change-points. If exactly R changes are found,
then one rejects H, in favor of H(®.

This process plays a role of clustering which constructs
groups as well as maintains the time sequence. In this point,
Phase II is distinguished from other clustering methods such
as the k-means clustering method and the hierarchical clus-
tering method that segment data samples by the Euclidean
distance between cases without considering the time
sequence.

3.3. Phase III (predicting the group of daily stock price
index by BPN)

The significant intervals in Phase II are grouped to detect
the regularities hidden in stock price index. Such groups
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Fig. 1. Correlation dimension vs. Embedding dimension in daily KOSPI 200.

represent a set of meaningful trends encompassing stock
price index. Since those trends help to find regularity
among the related output values more clearly, the neural
network model may have a better ability of generalization
for the unknown data. In general, the error for forecasting
may be reduced by making the subsampling units within
groups homogeneous and the variation between groups
heterogeneous (Cochran, 1977; Oh & Han, 2000). After
Phase II, BPN is applied to the input data samples at time
t with group outputs for ¢ + 1. In this sense, Phase III is a

model that is trained to find an appropriate group for each
given daily stock price index.

3.4. Phase 1V (forecasting the output of 1-min tick data by
BPN)

After Phase III is performed, the analyzed dataset is chan-
ged from daily data to the 1-min tick data. The time-lag of
input variable is kept for 1-min tick index. Phase IV is built
by applying the BPN model to each group. This phase
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Fig. 2. Daily KOSPI 200 data from January 1990 to August 2000.
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Table 1
Performance results of KOSPI forecasting based on RMSE, MAE and
MAPE

Date Model RMSE MAE MAPE (%)
April 3 Basic_NN 0.5298 0.5069 0.466
Prop_NN 0.1068 0.0788 0.073
April 6 Basic_NN 0.1842 0.1419 0.138
Prop_NN 0.0892 0.0623 0.060
April 21 Basic_NN 1.5997 1.5970 1.662
Prop_NN 0.5005 0.4965 0.517
May 19 Basic_NN 3.0364 3.0221 3.325
Prop_NN 2.3052 2.2621 2.492
June 7 Basic_NN 0.2798 0.2172 0.213
Prop_NN 0.0786 0.0598 0.058
June 13 Basic_NN 0.2055 0.1736 0.166
Prop_NN 0.0782 0.0597 0.057
July 24 Basic_NN 1.7202 1.6998 1.780
Prop_NN 0.6605 0.6156 0.646
July 25 Basic_NN 2.3840 2.3772 2.552
Prop_NN 1.3341 1.3199 1.418
August 17 Basic_NN 1.9928 1.9889 2.103
Prop_NN 0.8730 0.8642 0914
August 28 Basic_NN 2.5951 2.5930 2.806
Prop_NN 1.6133 1.6096 1.742
Total Basic_NN 1.7792 1.4397 1.530
Prop_NN 1.0480 0.7441 0.799

approximates a mapping function between the input sample
and the corresponding desired output (i.e. stock price
index). Once Phase IV is executed, then the sample can be
used to forecast the stock price index on minute unit.

4. Experiments

Research data used in this study comes from the daily
KOSPI 200 from January 1990 to August 2000. The total
number of samples includes 3069 trading days. From Phase
I, the results of chaos analysis in Fig. 1 indicate a saturating
tendency for the correlation dimension, leading to a fractal
dimension of about 5. The embedding dimension is 6. The
embedding dimension of 6 indicates that 5 time-lags may be

Table 2

Pairwise r-tests for the difference in residuals between the basic BPN model
and the proposed models for KOSPI 200 based on the APE (***significant
at 1%)

Date t p-value

April 3 43.868 0.000%**
April 6 11.092 0.000%**
April 21 186.678 0.000%**
May 19 51.042 0.000%**
June 7 16.696 0.000%**
June 13 19.619 0.000%**
July 24 140.165 0.000%**
July 25 107.586 0.000%**
August 17 186.991 0.000%**
August 28 153.185 0.000%**
Total 86.767 0.000%%*%*

shown to a neural network to predict the 6th data point of the
time series.

The training phase involves observations from January
1990 to March 2000 while the testing phase runs from
April 2000 to August 2000. The daily stock price index
data is presented in Fig. 2. Fig. 2 shows that the movement
of stock price index highly fluctuates.

In Phase II, the Pettitt test is applied to daily stock price
index data. In this study, KOSPI 200 data is assumed to be
just three change-points. This previous study demonstrated
that the number of change-point on the Pettitt test does not
affect the final results (Oh & Han, 2001). The study employs
two neural network models. One model, labeled Basic_NN,
involves five time-lag input variables to generate a forecast
for t + 1. The second type, labeled Prop_NN, is the two-
stage BPN model for four homogeneous groups. Phase III
forecasts the change-point group for daily KOSPI 200 data-
set. Then, Phase IV forecasts the final output for 1-min tick
dataset based on the results of Phase III. For validation, 10
days (April 3, 6, 21, May 19, June 7, 13, July 24, 25 and
August 17, 28) are randomly selected among testing data,
April 2000—August 2000, and the earlier-mentioned two
learning models are compared. The proposed model is
examined on the basis of the forecasting errors and the
returns from trading.

5. Results and discussions

5.1. Examining the significance of the proposed model on
the forecasting errors

Numerical values for the performance metrics by the
predictive model are given in Table 1. According to
RMSE, MAE and MAPE, the results indicate that Prop_NN
is superior to Basic_NN for all of 10 testing days.

We use the pairwise 7-test to examine whether the differ-
ences exist in the predicted values of models according to
the absolute percentage error (APE). This metric is chosen
since it is commonly used (Carbone & Armstrong, 1982)
and is highly robust (Armstrong & Collopy, 1992; Makri-
dakis, 1993). Since the forecasts are not statistically inde-
pendent and not always normally distributed, we compare
the APEs of forecast using the pairwise #-test. Where sample
sizes are reasonably large, this test is robust to the distribu-
tion of the data, to nonhomogeneity of variances, and to
statistical dependence (Iman & Conover, 1983). Table 2
shows t-values and p-values. Prop_NN performs signifi-
cantly better than Basic_NN at a 1% significant level.
Therefore, Prop_NN is demonstrated to obtain improved
performance using the change-point detection approach.

In summary, the trading model turns out to have a high
potential in stock price index forecasting. This is attributa-
ble to the fact that it categorizes the stock price index data
into homogeneous groups and extracts regularities from
each homogeneous group. Therefore, Prop_NN can cope
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Table 3

The profit of buying and selling simulations (US$1 = YAF1000 (approximate))

Date Buy and hold Basic_NN Prop_NN
Point Amount ($) Point Amount ($) Point Amount ($)

April 3 —2.20 —1100 —=3.19 1595 11.37 5685
April 6 -3.15 —1575 1.52 760 5.16 2580
April 21 0.11 55 0.78 390 —0.78 390
May 19 2.42 1210 —2.43 —1215 2.43 1215
June 7 3.14 1570 —4.08 —2040 14.88 7440
June 13 —-3.67 —1835 —-0.73 365 12.21 6105
July 24 —3.48 1740 3.73 1865 —3.73 1865
July 25 0.75 375 —-0.94 470 0.94 470
August 17 —1.06 530 0.40 200 —0.40 200
August 28 0.37 185 —0.63 —-315 0.63 315
Total —-6.77 —3385 —5.57 —2785 42.71 21,355

with the noise or irregularities more efficiently than
Basic_NN.

5.2. Calculating the trading returns of the proposed model

Determining stock market timing, when to buy and sell, is
a very difficult problem for humans because of the complex-
ity of the stock market. Stock market timing refers to deter-
mining the best time to buy and sell stocks, assuming that
KOSPI 200 fluctuate repeatedly. To examine the profitabil-
ity of Prop_NN, we apply to real 1-min tick dataset. In this
study, simple trading rule is used as follows:

Trading rules: If the predicted stock price index at ¢ + 1
min is greater (or less) than the stock price index at ¢
minute, buy (or sell) the stock. The position of buying
(or selling) stock should be closed 1 min later.

Trading profit earned from simulation results are
summarized in Table 3. One point in KOSPI 200 futures
market is worthy of 500,000 won (about 417$). The bold
value in Table 3 means the best profit for a given day.
Prop_NN obtains the best profit point for 7 days of 10
days. Prop_NN earnes total profit points in 10 testing days
amount to 42.71 point (about 18,000$), which is superior to
that of Buy and hold strategy and Basic_NN with minus fee
for trade. Therefore, Prop_NN provides high profit in real
time stock price index trading.

6. Concluding remarks

This study has suggested the stock trading model based
on chaotic analysis and piecewise nonlinear model. The
proposed model consisted of four phases. The first phase
selects the time-lag size for input variable based on the
chaos theory. The second phase conducts the nonparametric
statistical test to construct the homogeneous groups. The
third phase applies BPN to forecast the change-point
group in the third phase. The final phase applies BPN to
forecast the output.

The proposed trading model using piecewise nonlinear
model performs significantly better than the basic BPN
model at a 1% significant level. These experimental results
imply the change-point detection has a high potential to
improve the performance. In conclusion, we have shown
that Prop_NN improves the predictability of stock price
index significantly. Through the trading, furthermore,
Prop_NN also demonstrates to get high profit.

Prop_NN has the promising possibility of improving the
profit if further studies are to focus on various trading rules
and strategies. In Phase IV, other intelligent techniques
besides BPN can be used to forecast the output. In addition,
the proposed model may be applied to other chaotic time
series data such as interest rate and exchange rate
prediction.

References

Ahmadi, H. (1990). Testability of the arbitrage pricing theory by neural
networks. Proceedings of the International Conference on Neural
Networks (pp. 385-393). San Diego, CA.

Armstrong, J. S., & Collopy, F. (1992). Error measures for generalizing
about forecasting methods: Empirical comparisons. International
Journal of Forecasting, 8, 69—-80.

Banergee, A., Lumsdaine, R., & Stock, J. (1992). Recursive and sequential
tests of the unit root and trend break hypothesis: Theory and inter-
national evidence. Journal of Business and Economic Statistics, 10,
271-287.

Carbone, R., & Armstrong, J. S. (1982). Evaluation of extrapolative fore-
casting methods: Results of academicians and practitioners. Journal of
Forecasting, 1, 215-217.

Cecen, A. A., & Erkal, C. (1996). Distinguishing between stochastic and
deterministic behavior in high frequency foreign exchange rate returns:
Can non-linear dynamics help forecasting? International Journal of
Forecasting, 12, 465-473.

Choi, J. H., Lee, M. K., & Rhee, M. W. (1995). Trading S&P 500 stock
index futures using a neural network. Proceedings of the Third Annual
International Conference on Artificial Intelligence Applications on
Wall Street (pp. 63—72). New York.

Christiano, L. J. (1992). Searching for a break in GNP. Journal of Business
and Economic Statistics, 10, 237-250.

Cochran, W. G. (1977). Sampling techniques, New York: Wiley.

Embrechts, M. (1994). Basic concepts of nonlinear dynamics and chaos



K.J. Oh, K.-j Kim / Expert Systems with Applications 22 (2002) 249-255 255

theory. In G. J. Deboeck, Trading on the edge (pp. 265-279). New
York: Wiley.

Embrechts, M., Cader, M., & Deboeck, G. J. (1994). Nonlinear dimensions
of foreign exchange, stock, and bond market. In G. J. Deboeck, Trading
on the edge (pp. 297-313). New York: Wiley.

Gorr, W. (1994). Research respective on neural networks. International
Journal of Forecasting, 10, 1-4.

Gottman, J. M. (1981). Time series analysis, New York: Cambridge
University Press.

Grassberger, P., & Procaccia, P. (1983). Measuring the strangeness of
strange attractors. Physica, 9D, 189-208.

Hiemstra, Y. (1995). Modeling structured nonlinear knowledge to predict
stock market returns. In R. R. Trippi, Chaos and nonlinear dynamics in
the financial markets: Theory, evidence and applications. Chicago, IL:
Irwin.

Iman, R., & Conover, W. J. (1983). Modern business statistics, New York:
Wiley.

Kamijo, K., & Tanigawa, T. (1990). Stock price pattern recognition: A
recurrent neural network approach. Proceedings of the International
Joint Conference on Neural Networks (pp. 215-221). San Diego, CA.

Kaufman, K. A., Michalski, R. S., & Kerschberg, L. (1991). Mining
for knowledge in databases: Goals and general description of the
INLEN system. In G. Piatetsky-Shapiro & W. J. Frawley,
Knowledge discovery in databases (pp. 449-462). Cambridge,
MA: AAAI/MIT Press.

Kim, K., & Han, L. (2000). Genetic algorithms approach to feature discre-
tization in artificial neural networks for the prediction of stock price
index. Expert Systems with Applications, 19 (2), 125-132.

Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990). Stock market
prediction system with modular neural network. Proceedings of the
International Joint Conference on Neural Networks (pp. 1-6). San
Diego, CA.

Kohara, K., Ishikawa, T., Fukuhara, Y., & Nakamura, Y. (1997). Stock
price prediction using prior knowledge and neural networks. Interna-
tional Journal of Intelligent Systems in Accounting, Finance and
Management, 6, 11-22.

Li, H. L., & Yu, J. R. (1999). A piecewise regression analysis with auto-
matic change-point detection. Intelligent Data Analysis, 3, 75—85.
Lumsdaine, R. L., & Papell, D. H. (1997). Multiple trends and the unit root
hypothesis. The Review of Economics and Statistics, 79, 212-218.
Makridakis, S. (1993). Accuracy measures: Theoretical and practical

concerns. International Journal of Forecasting, 9, 527-529.

Mishkin, F. S. (1995). The economics of money, banking, and financial
markets, New York: Harper Collins.

Oh, K. J., & Han, I. (2000). Using change-point detection to support arti-
ficial neural networks for interest rates forecasting. Expert Systems with
Applications, 19, 105-115.

Oh, K. J., & Han, 1. (2001). An intelligent clustering forecasting system
based on change-point detection and artificial neural networks:

application to financial economics. Proceedings of the Thirty-Fourth
Hawaii International Conference on System Sciences (HICSS). Hawaii.

Patterson, D. W. (1996). Artificial neural networks, New York: Prentice-
Hall.

Perron, P. (1989). The great crash, the oil price shock, and the unit root
hypothesis. Econometrica, 57, 1361-1402.

Perron, P. (1990). Testing for a unit root in time series with a changing
mean. Journal of Business and Economic Statistics, 8, 153-162.

Perron, P. (1995). Further evidence on breaking trend functions in macro-
economic variables. Manuscript. Canada: Université de Montreal.

Perron, P., & Vogelsang, T. (1992). Nonstationarity and level shifts with an
application to purchasing power parity. Journal of Business and
Economic Statistics, 10, 301-320.

Peters, E. E. (1996). Chaos and order in the capital markets, New York:
Wiley.

Pettitt, A. N. (1979). A non-parametric approach to the change-point
problem. Applied Statistics, 28, 126—135.

Pettitt, A. N. (1980a). A simple cumulative sum type statistic for the
change-point problem with zero—one observations. Biometrika, 67,
79-84.

Pettitt, A. N. (1980b). Some results on estimating a change-point using
nonparametric type statistics. Journal of Statistical Computation and
Simulation, 11, 261-272.

Quah, T. -S., & Srinivasan, B. (1999). Improving returns on stock invest-
ment through neural network selection. Expert Systems with Applica-
tions, 17 (4), 295-301.

Rapport, P., & Reichlin, L. (1989). Segmented trends and non-stationary
time series. The Economic Journal, 99, 168—177.

Trippi, R. R., & DeSieno, D. (1992). Trading equity index futures with a
neural network. The Journal of Portfolio Management, 19, 27-33.
Tsaih, R., Hsu, Y., & Lai, C. C. (1998). Forecasting S&P 500 stock index
futures with a hybrid Al system. Decision Support Systems, 23, 161—

174.

Vogelsang, T., & Perron, P. (1995). Additional tests for a unit root allowing
for a break in the trend function at an unknown time. Manuscript.
Ithaca, New York: Department of Economics.

Vostrikova, L. J. (1981). Detecting disorder in multi-dimensional random
process. Soviet Mathematics Doklady, 24, 55-59.

Wasserman, P. D. (1989). Neural computing: Theory and practice, New
York: Van Nostrand Reinhold.

White, H. (1994). Can neural networks forecast in the big leagues? Compar-
ing network forecasts to the pros? Proceedings of International Sympo-
sium of Forecasting (p. 24). Stockholm, Sweden.

Wolkenhauer, O., & Edmunds, J. M. (1997). Possibilistic testing of distri-
bution functions for change detection. Intelligent Data Analysis, 1,
119-127.

Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash,
the oil-price shocks, and the unit-root hypothesis. Journal of Business
and Economic Statistics, 10, 251-270.



